After 30 Years of Study, the Bacterial SOS Response Still Surprises Us

نویسنده

  • Bénédicte Michel
چکیده

1174 I n order to survive in various environmental conditions, cells have a repertoire of genes that they can choose to express or silence according to their needs. Among this vast collection of genetically controlled networks, the SOS response is an inducible DNA repair system that allows bacteria to survive sudden increases in DNA damage. The importance of the SOS response is underscored by the observation that this regulatory network is widely present in bacteria, reflecting the need for all living cells to maintain the integrity of their genome. The first experimental support for the existence of an inducible DNA repair network in Escherichia coli was found 30 years ago by Miroslav Radman, who introduced the term " SOS response " to describe this network [1]. Two proteins play key roles in the regulation of the SOS response: a repressor named LexA and an inducer, the RecA filament. During normal growth, the LexA repressor binds to a specific sequence—the SOS box, present in the promoter region of SOS genes—and prevents their expression. SOS genes are repressed to different degrees under normal growth conditions. This depends on the exact sequence of their SOS box (the region of a promoter that is recognized by LexA), its position in the promoter region, and the strength of the promoter. When the cell senses the presence of an increased level of DNA damage, the LexA repressor undergoes a self-cleavage reaction and the SOS genes are de-repressed (Figure 1). A nucleoprotein complex—the RecA filament— induces the LexA cleavage reaction. RecA is a ubiquitous protein, present in nearly all bacteria and conserved in all organisms, including humans. It specifically binds single-stranded DNA (ssDNA), forming a nucleoprotein filament that has two functions [2]: the RecA filament may either invade a homologous double-stranded DNA sequence and catalyze strand exchange (the key reaction of homologous recombination), or it may promote LexA cleavage (thereby inducing the SOS response). However, RecA binding to ssDNA is also regulated. It is prevented in vivo by the ubiquitous presence of the ssDNA binding protein. Two systems allow RecA to overcome the ssDNA binding protein barrier on certain substrates: the RecFOR proteins assist RecA binding to single-strand gaps, and the RecBC proteins directly load RecA on the processed double-strand ends. Consequently, DNA-damaging agents that induce the formation of DNA single-strand gaps, such as UV light, will induce the SOS response only if the RecFOR proteins are …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Study of SOS Genes Expression in Mutant Barley Root under Salt Stress

Soil salinity is one of the most critical factors reducing crop yield. SOS signaling is one of the significant pathways that regulate ion homeostasis and it has the important role in mechanism of plant resistance to environmental stresses such as salt stress. Roots are the first organ of plants exposed to salt, so the role of genes involved in this pathway and their relation to salt tolerance w...

متن کامل

Can serum procalcitonin measurement help monitor the treatment of acute bacterial meningitis? A prospective study

Background: Previous studies have demonstrated the value of serum procalcitonin (PCT) as a marker of bacterial infection, as well as the rapid decrease in its concentration with appropriate antibiotic treatment. The aim of this study was to determine the variation in serum PCT levels over time during the treatment of acute bacterial meningitis (ABM) in adults. Methods: In this prospective analy...

متن کامل

DNA Damage Repair and Bacterial Pathogens

All species require DNA repair pathways to maintain the integrity of their genomes. Bacterial damage repair mechanisms have broader roles encompassing responses to stress, long-term colonization, as well as virulence. The SOS response regulates DNA repair and damage tolerance genes in many bacterial species. This article highlights the bacterial SOS response and its significance in bacterial ad...

متن کامل

Three-dimensional Power Doppler Ultrasonographic Evaluation of Induced Cystitis in Dogs

Objectives: The aim of this study was to investigate if three-dimensional power Doppler (3DPD) ultrasound (US) can detect bacterial cystitis in dogs better than two-dimensional (2D) US. Animals: Six mixed breed dogs Procedures: Ten ml of 0.1% alcoholic solution of salicylic acid was entered into the urinary bladder of six male mixed-breed dogs by catheter. Twenty four hours later, culture sol...

متن کامل

Bacterial SOS response: a food safety perspective.

The SOS response is a conserved inducible pathway in bacteria that is involved in DNA repair and restart of stalled replication forks. Activation of the SOS response can result in stress resistance and mutagenesis. In food processing facilities and during food preservation, bacteria are exposed to stresses and stimuli that potentially activate the SOS response, resulting in resistant or adapted...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2005